Algae-based microrobots able to clean up plastic waste

Swarms of iron-clad algae have been built to sweep through bodies of water to collect elusive bits of micro- and nanoplastics. Meet the Microrobots!

Imagine you are but a piece of plastic, adrift in an endless ocean — a mere remnant of a once larger structure, the origin of which you do not recall. You are the product of many, many years of natural erosion, and yet you, invisible to the human eye, persist.

Moved by the ocean’s whims, your fate is likely to be consumed by whichever organism stumbles upon you first. But suddenly, a shadow looms overhead, and much to your disbelief, it is no fish or squid, but a green sphere covered in bits of black iron, moving towards you at unnatural speeds. You feel yourself being pulled towards it, and as you approach, you realize it’s also covered in many others like you.

Albeit a dramatic representation for effect, it hints at a remarkable development made possible by a team of researchers at the Central European Institute of Technology (CEITEC) at Brno University of Technology.

By decorating green algae cells with ever so tiny particles of black iron oxide — also known as magnetite — the team created magnetic algae robots that can be controlled from a distance to sift the most elusive of plastics from the waters.

A mess to clean up

Let’s face it: we love plastics. They are cheap, flexible, and moldable, while also being very durable and light. This makes them extremely convenient materials for endless applications, and thus, their current widespread use.

However, these very advantages are also highly detrimental from an ecological perspective. Their rising levels of production, combined with their characteristic resistance to natural degradation, have led to huge quantities of plastic waste that will stay in the environment for anywhere between a few decades to several centuries.

Throughout this entire time, plastics in aquatic environments will break down into minute fragments that are categorized into microplastics (smaller than 5 mm) and nanoplastics (smaller than 1000 nm). These fragments are then ingested by fish and other aquatic organisms, causing physical harm, problems in digestion and reproduction, and potentially death.

They can also collect other pollutants present in the water, such as heavy metals and organic contaminants. These plastics and the contaminants they carry are transferred up the food chain, and scientists are still beginning to study what effects, if any, this might have on humans in the long run.

To try and clean this mess and mitigate the persistence of micro- and nanoplastics in the environment, researchers have been developing all sorts of solutions. Unfortunately, these generally suffer from being too complex or expensive to carry out, or simply weren’t efficient enough.

This is where the robots come in.

Magnetic algae robots

To better target these tiny plastics, a team of researchers at CEITEC came up with the idea of creating equally tiny janitors that they could control. These tiny robots are not like the conventional mechanical machines we’re used to but are themselves micro/nano-sized particles made up of a combination of various functional materials.

“I was thinking I could find one cheap and mass-producible material to replace expensive metals,” said Xia Peng, a researcher and Ph.D. student at CEITEC, and primary author of the current study published in the Advanced Functional Materials journal. “Then algae cells just came to my mind.”

Dubbing them “magnetic algae robots” or MARs, Xia and her team decorated cells of Chlorella vulgaris (a species of green microalgae) with eco-friendly magnetite nanoparticles, which enable the MARs to be manipulated using an external magnetic field. These algae are not only biodegradable, but they are also easy and cheap to mass produce.

Another advantage is that their surface is riddled with chemical groups called carboxylic acids, which carry a negative electrostatic charge. “The surface charge of MARs is negative due to the presence of [carboxylic acid] groups, while the surface charge of the micro/nanoplastics selected is positive, which promotes the electrostatic attraction of targeted micro/nanoplastics, allowing for their capture and removal,” explained Xia.

The negatively charged algae attract positively charged micro/nanoplastics and keep them “glued” to themselves. This is also how the magnetite nanoparticles, which are positively charged, can be attached to the surface of the algae cells for remote magnetic control without requiring any complex processing.

Initial tests

For their tests, the team used a positively charged fluorescent variant of the ubiquitous plastic polystyrene, whose size varied from 2 μm to 50 nm. This fluorescent form glows under specific experimental conditions and enables the team to measure the quantity of plastic removed from water samples by the MARs, including deionized, tap, rain, and lake water.

They added MARs to these contaminated water samples, sent them on predefined trajectories under magnetic guidance — picking up the polystyrene in their path — and then examined the treated samples by comparing their levels of fluorescence intensity before and after the treatment.

“The most significant findings,” declared Xia, “were the successful capture of micro/nanoplastics […] with high removal efficiency for both nanoplastics (92%) and microplastics (70%).”

Not only that, but MARs could be recycled for further use by washing off the captured plastics. Small amounts of their magnetite coating were also washed away, but they still preserved around 80% efficiency for capturing nanoplastics and 54% for microplastics even after five cycles of washing, after which they could simply don a fresh coat of magnetite and be back to full potency.

“MARs could potentially be tested in salt water since their magnetically driven movement is not affected by salinity,” mentioned Xia. “However, the study is still in the initial stage.

“It’s important to further study the biodegradability and potential long-term environmental effects of these nanoparticles to ensure they do not lead to toxicity issues.” But things seem promising on that front.

“Generally, iron oxide magnetic nanoparticles are considered biocompatible and have been already employed in various environmental and biomedical applications,” said Xia. “In addition, in our case, the nanoparticles can be easily collected by a permanent magnet at the end of the process, ensuring that no particles are left to contaminate the water.”

Further development

Not all plastics polluting our waters are positively charged, though. Many are negatively charged under normal aquatic conditions, meaning MARs wouldn’t be able to capture them through their current built-in electrostatic interactions.

“Our system on the initial experimental stage is kind of limited because MARs only could capture positively charged plastics,” said Xia. “In the future, I also would like to develop a system that can capture negatively charged micro/nanoplastics. But now, I need time to think about it.

“I think the utilization of natural sources, like algae cells, to accomplish specific tasks is highly promising. I believe if developed enough, MARs would be sufficient to deal with the recovery of micro/nanoplastics.

“It’s possible they could complement other methods rather than entirely replace them. This may include their combination with other functional nanoparticles, which can allow MARs to perform other tasks.”

Reference: Martin Pumera, et al., Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment, Advanced Functional Materials (2023). DOI: 10.1002/adfm.202307477

Feature image: Algae-based microrobots under fluorescence. Credit: Xia Peng, et al.

Story 1st appeared on www.advancedsciencenews.com by Diogo Pinheiro | Oct 26, 2023

Marine bacteria bite into plastic pollution

24 October 2023
Researchers at Hokkaido University, working with colleagues at the Mitsubishi Chemical Group in Japan claim to have determined Bacteria found in the sea can degrade plastics that would otherwise resist microbial breakdown in marine environments.

Read more here

Robot shark

‘Robot shark’ from startup RanMarine collects waste from the canals of Zaandam: Rotterdam company is aiming for ’round of millions’ to conquer the US

Frequent visitors to the Zaandam city center will have already seen him: the so-called ‘Veulvreter’. Here, in the Gedempte Gracht, a small white boat sails once a week with an insatiable hunger for waste. Floating cans, chip trays, PET bottles: this mini-catamaran eats everything that we humans would rather lose than be rich.

The ‘Veulvreter’, as it is called in Zaandam, is actually called WasteShark. It is a creation of the Rotterdam company RanMarine (in full: RanMarine Technology). After a charge, the electrically powered boat can search the water for six hours for waste, according to a pre-programmed zigzagging pattern. As a result, the ‘robot shark’ can remove up to 500 kilograms of waste from the water per day, according to the startup.

Zaanstad was the second Dutch municipality to launch the WasteShark in December, after Dordrecht had previously conducted a successful trial with the device. It saves time for employees of the municipal waste service in Zaandam, as they no longer have to fiddle with fishing nets to retrieve discarded cans from the canal.

Esther Lokhorst stands bent over one of her robot sharks in an old industrial building on a business park in the Rotterdam industrial area Nieuw Methesse. The interior can be described as a potpourri of wires and chips. A team of four young men works on the hardware and Lokhorst, as operational director, keeps an eye on things.

A little further in the open air we find a small water bath, which was installed here by RanMarine. Even though the sun is shining seductively this Wednesday afternoon, people are not supposed to take a dip in it. The only bather allowed is the WasteShark, which Lokhorst and her team test here after every refinement of the technique.

RanMarine’s WasteShark makes a tour of the test pool in Rotterdam. In the background operational director Esther Lokhorst (left) and founder Richard Hardiman.Photo: Business Insider Netherlands/Jelmer Luimstra

Sensor-equipped drones

The boats are in fact drones equipped with GPS and two sensors. The sensors measure the water quality and depth and forward this information to an online portal of RanMarine. “If, for example, dredging is required, customers immediately gain insight into how deep the soil is,” says Lokhorst.

Her company supplies floating drones that work completely autonomously, but also robot boats that you can control remotely. The robot boat can not only grab plastic waste from the water, but also duckweed. The company is currently investigating in Helsinki whether it is also possible to rid the water of blue-green algae.

No, the robot sharks are not a danger to passing birds, Lokhorst says when asked when we take a seat in a deserted, industrial-looking company canteen. “The boats only sail three kilometers per hour,” says the director. “In our five years of existence, we have never caught a bird or even a fish.”

RanMarine has so far sold more than fifty of these types of boats to 25 customers, says Lokhorst. Many of those customers come from abroad. For example, robot boats from the startup are sailing in the port of Houston, in Dallas and in Plymouth in the UK. The company has customers worldwide: from South Africa to South Korea and from Nigeria to Ireland.

Typical customers are government institutions and water boards, but theme parks are also part of the regular customer base. For example, RanMarine supplies its robot boats to Disney and Universal parks in Florida, among others. “America is a very important market for us,” says Lokhorst. “We are therefore now setting up an American division. We already have employees in the US and want to expand considerably.”

In time, this should result in an American office, says Lokhorst when asked. When, she can’t say yet. “For the time being, we will keep production and development here in Rotterdam. If we scale up considerably in the US, we will also start an assembly department there.”

In the Netherlands, Zaandam and Dordrecht are currently the only municipalities to which RanMarine supplies its aquadrones. It sometimes turns out to be quite complicated to hook up with municipalities. “The municipality is not always responsible for cleaning up waste. Some municipalities outsource this to cleaning companies.”

Lokhorst does state that its sales team is busy hooking up more Dutch municipalities. RanMarine even expects to start a project in the Wadden Sea soon.

Operations director Esther Lokhorst (left) of RanMarine joined the company in 2017. To the right of its founder Richard Hardiman. Business Insider Netherlands/ Jelmer Luimstra

Film WALL-E provided inspiration

Lokhorst is not the founder of RanMarine. The company was founded in 2016 by South African Richard Hardiman, who worked as a radio DJ and journalist in a previous life.

Hardiman came up with the idea of ​​the garbage-eating robot shark when he was sitting on a terrace in Cape Town and saw people using a net to remove dirt from the water. There had to be an easier way, Hardiman thought. His mind wandered off to the film WALL-E, in which the leading role is played by a futuristic robot that collects and compresses waste.

A little further on, the bearded man in his forties is having a video call with a colleague from the US. Hardiman has been living in the Netherlands since 2020, where he saw more opportunities to succeed with his startup plan than in South Africa. He participated in a growth program of PortXL, a company affiliated with the port of Rotterdam, for which Lokhorst worked. She joined the then fledgling startup in 2017.

Now, six years later, the company already employs 23 people. RanMarine has been profitable since 2021, according to Lokhorst. The company does not share profit and turnover figures. From the most recent summary profit and loss account that the company filed with the Chamber of Commerce (KvK), it can be concluded that RamMarine closed 2021 with a positive equity capital of more than 7 tons.

RanMarine raised an unknown amount of growth financing twice in its existence. According to Lokhorst, a “serious round of millions” is planned for April. With the upcoming millions, RanMarine hopes to be able to grow faster, especially in the US. The company is also investing in the development of larger aquadrones and robot boats that can extract oil from the water.

Rapid growth also seems to be necessary. In 2019, RanMarine was the first party to market an aquadrone. The market is now busier, with competitors in France, China and the US. Nevertheless, Lokhorst does not see a major threat in this: “The market is large enough for several parties. The positive thing about more competition is that this technique will become better known as a way to remove rubbish from the water.”

Article written by Jelmer Luimstra of Business Insider Nederland

Feb 23, 2023

The shark that collects waste and data

If you look carefully, staring at the water, you will see it: a shark with a huge open mouth. But no fish, plankton or unsuspecting swimmers disappear into this shark’s mouth: the WasteShark catches plastic and other waste. RanMarine’s promising prototype has developed into a mature water robot that cleans water worldwide. Creator Richard Hardiman: ‘I am an inventor, I enjoy turning ideas into actual solutions.’

The idea for the WasteShark originated in South Africa, where Hardiman comes from. ‘I saw two people fishing rubbish out of the water with a fishing net. I thought: surely there must be a different and better way of doing that? A product that can clean up waste without anyone being present. Around the same time, I became a father and developed an interest in sustainability. I wanted to do something good, also in terms of work. And that’s how the idea for the WasteShark was born. I have an engineering background so I started building. In 2016 I came into contact with the PortXL programme that allowed me to develop my idea as part of my newly established startup RanMarine.’

Water robot

Hardiman ended up at RDM Rotterdam, where he continued to develop his shark: ‘The WasteShark is a mini-water robot that floats and can navigate autonomously. It scours the surface of the water for plastic, waste and pollution and other things that do not belong in the water. The WasteShark collects it in its ‘open mouth’ and brings it to the shore. The smart shark can also pick up natural material that impacts water quality, such as duckweed, algae and aquatic plants. In addition, the WasteShark collects data on water quality. For example, it can monitor whether outboard water is suitable for swimming.’


How large and heavy is the shark? Hardiman lists the specifications: ‘The WasteShark is controlled via 4G, has a range of 3 kilometres, reaches a speed of 3 kilometres per hour and can swim for about 6 hours. The water robot is 1.57 metres long, 1.09 metres wide, 52 centimetres high and weighs 75 kilos. Very manageable in other words.’

Easy to use

There are several people and organisations whose models retrieve waste from the water. How is WasteShark different from other solutions? Hardiman: ‘It is simple, elegant and efficient. It is emission-free and does not result in any other pollution in the water, and it is easy to deploy. That was also our aim. We wanted to design a tool that collects as much waste as possible in a simple and manageable way, and can be used easily and by as many people as possible. If you have a fairly large car, you can even transport it in the boot. So it’s user-friendly for a wide audience.’

Millions of sharks

How does Hardiman see the future? ‘I am not against plastic, it is a convenient product. But we do have a huge mountain of plastic waste entering the environment. It’s all about how to recycle plastic even better. We can make great strides in that and the WasteShark can contribute. My dream is to have millions of WasteSharks active all over the world. Not only to collect waste, but also to collect data. We need to know what is in our water and not just what is floating on it. Using that data, we can learn how to improve and maintain the quality of the water!’


What does Rotterdam mean to Hardiman? ‘My original idea was to return to Cape Town, but the Port of Rotterdam is a springboard to the world of robotics and engineering. And there’s a strong network of companies here committed to sustainability worldwide. This will allow us to improve the WasteShark even further and expand its distribution. I started out on my own and now we have grown into a company with 25 people, thanks to Rotterdam. I am glad I stayed, because without the Port of Rotterdam, RanMarine would not be here!’

Article and Video by Port of Rotterdam 

WasteSharks – Taking a bite out of water pollution

The state of the planet, and particularly our bodies of water, is becoming of greater concern every day. Some estimates are that one million plastic bottles are sold every minute across the globe, many of these ending up in waterways.

One man who is making a massive difference in that regard is Cape Town’s own, founder of RanMarine and the WasteShark – a marine vessel designed to both clear unwanted material from inland and near-coastal water, and to collect water quality data from the marine environment – that’s now operational in 12 countries around the world, including South Africa.

“The purpose of the WasteShark is to remove waste, litter (plastics) and harmful algae from the surface of the water. The idea is that, very much like a small autonomous vacuum cleaner… this machine can operate in a similar fashion, cleaning the water constantly,” explains Hardiman.

“Our purpose is to develop technology to make our world a more liveable place and ease the pressure humans are adding to our fragile water resources and ecosystems”

“The WasteShark and our developing platforms are part of the greater vision of making collection of waste and pollution in water more efficient, less costly and ultimately less harmful than current methods used,” he adds.

1. When was the WaterShark invented?
The WasteShark was invented as a concept in 2013 but wasn’t developed into a first prototype until 2015; in 2016 the founder Richard Hardiman was invited to enter a maritime accelerator in Rotterdam, the Netherlands where he received funding to develop the first version of the WasteShark we know today.

2. What was the motivation behind its invention?
The original idea came about when Richard saw how marine litter was then being cleaned by water authorities, using small boats and pool nets to remove the litter. Richard thought he could design and come up with a more effective way to remove waste from water using drones. The original motivation was a desire for greater efficiency but also led Richard into the environmental space where he saw just how effective new technology could be in helping our planet.

3. Where is the WaterShark being used? Where did it start off and how has it grown over the years?
The idea and concept were developed in Cape Town, South Africa and the very first prototype was built and tested there. Subsequently Richard moved the business to the Netherlands to develop the product and business further.  Since 2016 drones now operate in the EU, Ireland, the UK, South Korea, India, Australia and the USA amongst others.

4. What purpose does it serve? How does it function?
The purpose of the WasteShark is to remove waste, litter (plastics) and harmful algae from the surface of the water.  The idea is that very much like a small autonomous vacuum cleaner you may have in your house, this machine can operate in a similar fashion, cleaning the water constantly.  RanMarine has developed two versions of the product, one that is remote controlled and an operator can remain on the quayside while cleaning and capturing waste. The second version is an autonomous robot that can be set to clean an area without human intervention and return with waste once it is full. It uses onboard lidar as collision avoidance and collects water quality data as it goes using sensors mounted onboard.

5. How does the product omit emissions?
The WasteShark uses batteries to operate so it does not emit any emissions while it is in use – like a battery-powered car, the WasteShark can be operated up to 10 hours a day on a single charge.

6. Are there any plans to further develop the WasteShark, and what do those plans look like?
RanMarine is launching a larger version in the next six months capable of removing one ton of waste in a single load, this has been developed over the last few years and will be on sale in the middle of the year; we are also developing a docking station which houses up to five WasteSharks at a time, empties their baskets automatically and recharges them making it a total autonomous solution where humans are only required for oversight.

SA Sailing in partnership with World Sailing are committed to reducing waste and together have released a cobranded Sustainability Education Programme for sailing clubs and parents as part of the 2030 Agenda of Sailing’s commitment to global sustainability.

If you would like to see WasteShark in your local waters, please contact RanMarine today and start the journey of reducing waste in South Africa.

The article can be found on link.

Challenger50 of 2022

Challenger50 of 2022

This is the MT/Sprout Challenger50 of 2022 : the list of fifty
most challenging, innovative and fast-growing companies in the Netherlands.
These entrepreneurs break with existing business models
and show the established order how things can be done differently, faster and better.

Challenger50 is powered by Tech Rise People and EY .

These are the 50 most challenging
and innovative companies of 2022

RanMarine Technology

With the WasteShark, RanMarine Technology from Richard Hardiman supplies a floating robot that tackles the plastic soup like a nautical Roomba.

What: Drone that removes plastic from the water
Who: Richard Hardiman (46)
Challenges: Plastic soup
Since: 2016
Employees: 18
Funding: 2.3 million euros (VCs and subsidy) Website : ranmarine.io

The idea came to him when Richard Hardiman saw a few people scooping plastic from a boat on a terrace in Cape Town. That had to be more efficient than with a scoop net, right?

At the time, the Briton Hardiman had already completed a career as a journalist and radio DJ and was studying business in South Africa. On a napkin he drew a robot that, just like Wall-E in the delightful animated film, collected plastic from the water.

Auquadrone with lidar

That was almost ten years ago. But the idea did not leave him. After his studies, Hardiman and a partner decided to create a startup around his WasteShark: RanMarine Technology. In a great place: Rotterdam, where more startups around the theme of sea and ports are being set up.

In recent years, the aquadrone has been developed into a smart and – thanks to lidar – self-propelled system. Like the familiar Roomba for the home, the electric sharks sail autonomously, soon from a docking station where they can recharge themselves and dump their dirt.

‘We have launched an emission-free electrical alternative that the government and water boards can use, instead of older technology that mainly runs on fossil fuels. We challenge water managers to do better with pollution,” says Hardiman.

Clean up and collect data

Where Boyan Slat looks for the open sea, where he wants to remove the gigantic floating clumps of plastic soup, Hardiman limits himself to inland waterways. In ports and canals, the autonomous surface vessels (ASV) also seek out the smallest corners to tackle dirt there.

But make no mistake: every day they consume up to 500 kilos of plastic or organic floating junk that does not end up in the ocean. Along the way, they also monitor water quality and temperature, collecting a wealth of data for their boss.

“ We chose to build drones with a very specific use case,” says Hardiman. ‘That sets us apart. We are also making it easy for our customers to use robots, enabling them to clean more, emit less carbon dioxide, and collect important water quality data at the same time.”

Innovation Award at CES

The WasteSharks are now several dozen and sail their rounds all over the world: from Denmark to Singapore and from England (Canary Wharf) to the port of Houston. Disney, among others, uses the aquadrone in their American resorts.

They can also suck up more than just plastic. They are now also removing blue-green algae from the water in Helsinki, stuff that is suitable for processing in cosmetics and animal feed. Hardiman won an innovation award with it at the CES tech fair .

There are plenty of plans to scale up. In North America, Hardiman wants to open branches, and he is also looking at new products. The WasteShark should have a big brother, the MegaShark, with a capacity of 100 kilos per day, and a version that specializes in oil spills, the OilShark. RanMarine is looking for new funding for this. A stock exchange listing in the US could provide for this in the future.

Read article on mt/sprout

Interview with RanMarine

RanMarine is the creator of the world’s first commercially available marine drone that collects both waste and data from the world’s waterways. It’s line of industrial remote controlled and autonomous “Sharks” help government bodies and companies concerned with the economic, regulatory, and aesthetic impact of polluted water efficiently remove surface trash and biomass while preventing imbalances in their marine environments.

From estuaries and urban ports to inland rivers and lakes, RanMarine’s multipurpose drones incorporating advanced AI are inspired by nature and restore waterways back to their natural state with zero emissions, limited noise, and a fraction of the investment compared to other methods.

Interview with Richard Hardiman, CEO of RanMarine Technology.

Easy Engineering:  What are the main areas of activity of the company?

Richard Hardiman: RanMarine Technology is an autonomous robotics scale-up specialising in the autonomy of vessels/Aqua-drones on water to clean waste from our waterways.

E.E: What’s the news about new products?

R.H: RanMarine is launching a larger version which is capable of removing 1 ton of  waste in a single load, this has been developed over the last few years and will be on sale towards the end of 2022.  We are also developing a docking station which houses up to 5 WasteSharks at a time, empties their baskets automatically and recharges them making it a total autonomous solution where humans are only required for oversight.

E.E: What are the ranges of products? 

R.H: Our primary product, using the company’s proprietary autonomy and robotics software, is the WasteShark. The WasteShark is designed to robotically harvest plastic and biomass waste from urban waterways in smart cities, ports and harbours. Additionally, to waste harvesting the drone also collects water quality data and depth measurements. The RanMarine team is constantly researching and developing new products and expect to launch new products in the coming months.

E.E: At what stage is the market where you are currently active? 

R.H: The market is still in early stages and more focus is now being placed on biomass and plastic waste and there are very few competitors  in the market but this is growing.  More and more companies are coming with solutions.

E.E: What can you tell us about market trends?  

R.H: There are a number of companies in and around Europe researching and developing solutions to clean waste from waterways.  We have been successful in that our product can be operated autonomously as well as manually and can move in tight spaces.

E.E: What are the most innovative products marketed?  

R.H: The WasteShark is the first in its kind as an autonomous robot removing plastic waste.  Other solutions in the market trying to address the issue of plastic waste are The Ocean Cleanup and the Sea Bin.

E.E: What estimations do you have for the rest of 2022?  

R.H: We have two new products, ready in prototype phase, which will be launched in the next 4-6 months.  In addition, we are looking to expand to the USA market and opening an office later this year.

Read the article on Easy Engineering

From aquatic drones to AI beach buggies and enzymes that ‘eat’ polyester

The solutions being developed to clean up the 199 MILLION tonnes of plastic littering our oceans

  • Scientists and engineers are working to find solutions to the global problem of ocean plastic
  • Technologies like seabins, plastic interceptors and aquatic drones are currently being utilised
  • Plastic-eating enzymes, microbe nets and magnetic liquids are being scaled up, but show promise
  • MailOnline looks at how else we are working to remove rubbish from our oceans and rivers

Plastic waste is being discovered in increasingly remote locations around the world, from fresh Antarctic snow to the mountain air above the Pyrenees.

According to the World Economic Forum, between 75 and 199 million tons of plastic are currently in our oceans.

This ranges from large floating debris to microplastics, which form as the bigger pieces of waste break down.

As a result, scientists and engineers are working hard to find new solutions to the global problem of plastic pollution.

These include aquatic drones that can be programmed to scoop up floating debris from the surface of rivers, and buggies that use artificial intelligence (AI) to search for and pick up litter for use on beaches.

Scientists are also hoping to scale up the use of magnetic nano-scale springs that hook on to microplastics and break them down.

MailOnline takes a closer a look at some of the technologies currently being used to reduce the man-made debris in our oceans, and those that are still in development.

MailOnline takes a closer look at ten new technologies that are helping to remove man-made garbage from Earth's oceans, including plastic-eating enzymes and marine drones

MailOnline takes a closer look at ten new technologies that are helping to remove man-made garbage from Earth’s oceans, including plastic-eating enzymes and marine drones

According to the World Economic Forum, between 75 and 199 million tons of plastic are currently floating in our oceans, with millions of tons more dumped every year

According to the World Economic Forum, between 75 and 199 million tons of plastic are currently floating in our oceans, with millions of tons more dumped every year

To read the article by Mail on Line see this link

These drones are swallowing tonnes of plastic waste before it reaches the ocean

By Shivan Sarna  with AP
The WasteShark by RanMarine is designed to remove floating pollution such as plastics, algae and biomass from lakes, ponds, waterways and harbours. 

Millions of tonnes of plastic wind up in the ocean every year, killing plants and animals. That’s why companies around the world have developed novel devices to help reduce the ocean plastic problem.

Dutch company RanMarine has deployed several 157-centimetre wide aquatic drones called WasteSharks that capture rubbish and bring it back to land.

The drones can hold 160 litres of trash, floating plants and algae, according to RanMarine Technology.

The aquatic tech is inspired by the whale shark, which swims with its mouth wide open to capture prey.

“So, that’s why we have two pontoons, one on each side, so that the waste can come in from the front and it gets trapped in between the pontoons,” explains design engineer Tessa Despinic.

It’s crucial to scoop up the plastic before it reaches the large ocean expanse, says Nancy Wallace, director of the U.S. National Oceanic and Atmospheric Administration’s (NOAA) Marine Debris Program.

“Once plastic or trash ends up in the ocean, it’s very hard to collect because it does break down. And so it gets smaller and smaller and it’s just hard to get out to our big open oceans and collect the trash there.

What other trash devices have been developed around the world?

The system is also easy to maintain as each mesh fence is angled to guide trash to a riverbank excavators pile it into dump trucks.

In Chennai, eight traps in the Cooum River scooped up 2,200 tonnes of plastic and 19,800 tonnes of other trash and floating plants in 2018, according to the company.

Then there’s the Osprey Initiative of Mobile, Alabama in the US. The company sets up floating traps on creeks, canals and rivers in the southeast of the country and trains local crews to deal with the waste they catch.

These plastic-gobbling devices are an attempt to curb an estimated 8 million tonnes of plastic that enter the ocean every year.

“The most important thing with marine debris or plastic or trash in our ocean is we don’t want it there in the first place,” Wallace from the NOAA says.

“So while all of these devices are incredibly helpful, we really need to work on the upstream solutions of generating less waste from the consumer standpoint, but also the industry standpoint.”

Overall, Wallace adds, there are a lot of different players involved in solving the plastic waste problem.

The Invisible Wave

Marine Chemical Pollution: The Invisible Wave

Chemical pollution – of land, air, rivers, watersheds – has been a festering issue for decades, occasionally prompting resolute action. But only recently has the scale of chemical pollution become more apparent. Invisible Wave, part of the Back to Blue initiative between Economist Impact and The Nippon Foundation, brings the issue of marine chemical pollution to a wider audience that includes policymakers, governments, the chemicals industry itself, the broader business community, the finance sector, civil society and consumers.

Immersive data story on the science of chemical pollution

Chemicals are an essential part of our everyday life but without environmentally friendly methods or production, recycling and disposal, they pose a real and growing threat to our planet. Our immersive data story guides readers through the latest science and evidence on the interactions between chemicals with marine environments – and the steps needed to tackle the problem before it is too late.


The objective of The Invisible Wave is to raise the status of chemical pollution as a real priority for ocean health. The report, video, and other items below are only the beginning of the conversation. Ultimately, our aim is to have transformational impact on knowledge and awareness of marine chemical pollution.



Plastic is a critical problem for the ocean. But it is not the only problem. The Invisible Wave, published in March 2022, sets out a case for chemical pollution in the ocean to be treated with the same gravity and the same urgency as plastic pollution. In many ways, they are two sides of the same coin.



Based on a wide-ranging expert interview program and deep analysis of the scientific research, the white paper explains the past, present and possible futures of marine chemical pollution, focusing on all societal stakeholders – chemicals companies, industries reliant on chemicals, policy makers and consumers.

To read this interesting article,  please click on this link