Drones take to the skies in the chemical processing industries

September 1, 2017

Author: Mary Page Bailey


[extract from article]


The potential applications for drones extend beyond the skies into the water. Swimming — rather than flying — drones can be deployed for cleanup tasks in waterways where it might be difficult or hazardous to send personnel. RanMarine Technology B.V. (Rotterdam, the Netherlands; www.ranmarine.io) develops autonomous drones for removing solid waste or chemical contaminants from bodies of water. RanMarine’s waste-cleanup drone model, known as the WasteShark (Figure 12), can collect floating debris, such as plastic waste and other solid trash. Similarly, the company’s PlantShark model targets alien, or pest, vegetation, whose presence can place stresses on water supply and threaten biodiversity.


FIGURE 12. The removal of solid waste in closed waterways is aided by the use of swimming robots



The company’s newest endeavor, the ChemShark, is equipped with proprietary internal filtration technology to remove contaminants in ports, canals, lakes or other similar bodies of water (Figure 13). According to Oliver Cunningham, RanMarine’s chief commercial officer, the ChemShark is currently in the testing phase for advanced filtration technologies to efficiently remove a number of contaminants. RanMarine is working with a municipality in Sweden to deploy a ChemShark drone into a local port that has several chemical contaminants in its water, including cadmium, arsenic, copper, zinc, lead, polychlorinated biphenyl and dioxins. The company is also partnering with a potential customer in South Africa to institute a drone-based cleanup program for waste removal from a major commercial port. The company has also been investigating oil-spill-remediation capabilities for the ChemShark. According to Cunningham, RanMarine expects to have the first ChemShark in the water by early 2018.


FIGURE 13. Automated water treatment is a new frontier for drones



Marine drones are a natural fit for cleaning up tight spaces in waterways where waste or contaminants may accumulate. “The value of our drones over other waste-collecting vessels is that they are smaller, more agile, lighter and cost significantly less,” explains Cunningham. Furthermore, RanMarine is using solar-powered batteries in their drones, so the carbon footprint is extremely low. There is also no need for personnel to enter hazardous contaminated water, eliminating some serious safety concerns. And since the drones are fully autonomous and can run continuously, cleanup tasks can be completed more quickly. Furthermore, says Cunningham, the drones can work in intelligent teams, sharing information and effectively self-organizing to most effectively tackle the task.


One of the main concerns the company emphasized in the development of their technologies is the avoidance of unintended consequences for the ecosystem in a body of water (Figure 14). “To extract one chemical out of the water, you may have to introduce another chemical. The introduction of this new chemical might be problematic, so we are absolutely determined to think through these side effects first,” says Cunningham. “We’re also very mindful of wildlife and biodiversity. We’ve had zero animal or human injury to date,” he continues. Another important consideration in the development of the ChemShark was the material of construction for the drone’s hull, which has to withstand continuous exposure to harsh chemicals and potentially extreme conditions. The company decided on a silicon-resin polymer material that provides strength and resilience in corrosive marine environments.


FIGURE 14. Marine robots must be designed to minimize the effects on the surrounding ecosystem RanMarine




Article link: http://www.chemengonline.com/drones-take-cpi-skies/?pagenum=4


Share on Facebook
Share on Twitter
Please reload

Featured Posts

Meet the Zayed Sustainability Prize finalists

January 12, 2020

Please reload

Recent Posts